Synthesis of ω-Substituted Alkanethiols and (Bromomethyl)methylthiomalonates

by Michael J. Pfammatter, Vuk Siljegovic, Tamis Darbre*, and Reinhart Keese*

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern

Several multifunctional derivatives of methylthiomalonic acid (=2-(thiocarboxy)acetic acid), *i.e.* **20a**, **b**, **21**, **22a**, **b**, and **24**, were prepared from thiols bearing a functionalized head group, *i.e.* from **9a**, **b**, **12**, and **16d**, **f** (*Schemes 4* and 5). The association constants of the two dithio podands **8b** and **11** with K^+ were determined.

Introduction. – For development of models of the coenzyme- B_{12} -dependent methylmalonyl-CoA mutase, we have prepared a variety of (bromomethyl)methylthiomalonates (=2-(bromomethyl)-2-methyl-3-oxo-3-(alkylthio)propanoates) with head groups for molecular recognition. These model substrates are to be used to investigate the efficiency of the methylmalonyl-succinyl rearrangement when the substrate and the vitamin-B₁₂ molecule are held together by noncovalent interactions. The concept of enhancing the rearrangement by peripheral association of appropriate groups is based on the idea that enzymes or enzyme-coenzyme complexes must recognize their substrates and associate with them through noncovalent bonds to provide the orientation and proximity necessary for catalysis [1-4]. Hitherto, we have reported a hydrophobic model, where lipophilic alkane chains are used for the association between the methylmalonyl moiety and the vitamin B_{12} , appropriately modified in the periphery, and two models based on association in aprotic solvents between an $\mathbf{A} \cdot \mathbf{T}$ and a $\mathbf{C} \cdot \mathbf{G}$ base pair, respectively [5–8]. Enhanced rearrangement has been observed for the hydrophobic and the $A \cdot T$ mode [5][6]. In further persuit of vitamin- B_{12} -related concepts for molecular recognition between methylmalonyl substrates and the catalyst, we considered the association between polyether ('podand') units mediated by cations as well as the interaction between carbohydrate-derived units. We report here the preparation of alkanethiols bearing a polyether moiety or a pentahydroxyhexanoyl head group as well as the efficient synthesis of thioesters thereof. First results for the binding constants between two polyethers with alkali cations are reported.

Alkanethiols with Terminal Polyether and Glyconoyl Groups. – ω -Aminoalkanethiols are used as central building blocks, to which the head groups for molecular recognition are attached *via* acylation of the amino group. The thiomalonates are subsequently obtained from the modified alkanethiols by esterification. The homologuous series of *N*-(ω -bromoalkyl)phthalimides **3a**-**f** with C₆ and C₈ to C₁₂ alkyl chains were prepared from **1** and **2** in 56–72% yield (*Scheme 1*). The original

a) Na₂S₂O₃, MeOH/H₂O. b) I₂. c) H₂N-NH₂, EtOH. d) HCl.

procedure [9] was modified for the longer alkyl chains (C_{10} to C_{12}) and gave the compounds 3d-f as low-melting, colorless solids. The (dithiodialkanediyl)bis[phthalimides] 4a-f were obtained by treatment of (bromoalkyl)phthalimides 3a-f with Na₂S₂O₃ and oxidation of the *Bunte* salts with I₂ in 70-80% yield. The compounds 3b-f show the well-known behavior of alternating melting points for homologuous series of substituted alkanes [10][11]. The stable and easily isolated (dithiodialkanediyl)bis[ammonium chlorides] 5a-f were obtained in 60-80% yield by treatment of the phthalimides 4a-f with hydrazine followed by addition of hydrochloric acid. The bis[ammonium chloride] 5f was also characterized as the bis-amide 6.

Treatment of the acid chloride of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (7) with the bis[ammonium chlorides] 5a-c gave the desired (dithiodialkanediyl)bis[a-mides] 8a-c in 50% yield (*Scheme 2*). The synthesis of the dithio derivative 11, bearing an ester rather than an amide function as a link between the tris(oxyethanediyl) moiety and the thio group, was performed by reaction of 3,3'-dithiobis[propanol] (10; obtained from 3-bromopropanol [12]) with the acid chloride of 7. The dithio derivatives 8a, b and 11 were reduced with Zn in AcOH to the thiols 9a, b and 12 in almost quantitative yield.

The formation of the thiols incorporating a gluconoyl moiety was achieved by the reaction of the (dithiodialkanediyl)bis[ammonium chlorides] **5b** (n=8) or **5f** (n=12) with D-glucono-1,5-lactone (**13**) affording the dithio derivatives **14b** and **14f** which were

a) CHCl₂OMe or SO₂Cl₂. b) **5a-c**, Et₃N. c) Zn, AcOH. d) **10**, CHCl₂OMe, CH₂Cl₂, Et₃N.

a) **5b** (n=8) or **5f** (n=12), MeOH, reflux. b) **5d** (n=10), MeOH; Ac₂O, pyridine. c) Ac₂O, pyridine for **14f**. d) Zn, AcOH, and **15d** or **15f**.

insoluble in most organic solvents¹) (*Scheme 3*). The bis-amides **14b** and **14f** may be considered to be bolaamphiphiles [13]. Acetylation of **14f** with Ac_2O in pyridine gave the dithio derivative **15f**. Treatment of **5d** with **13** afforded a crude dithio derivative, which was not isolated but directly acetylated to **15d**. Subsequent reduction of **15d** and **15f** with Zn gave the thiols **16d** and **16f** in 53 and 92% yield, respectively.

¹) Upon heating to $150-153^{\circ}$, compound **14f** developed a smectic mesophase (probably smectic A) and decomposed below the clearing point at $T > 195^{\circ}$. Compound **14b** decomposed at $166-168^{\circ}$, but developed a mesophase upon quick cooling to $155-160^{\circ}$. We thank Prof. *R. Miethchen*, University of Rostock, for this analysis.

Thioesters. – The *tert*-butyl methyl methylmalonate (**17**), prepared as described [14-16], afforded the bromomethyl derivative **18** by deprotonation with NaH in the presence of DMPU (3,4,5,6-tetrahydro-1,3-dimethylpyrimidin-2(1*H*)-one), followed by alkylation with methylene bromide [17] (*Scheme 4*). The *tert*-butyl ester was then hydrolyzed by treatment with CF₃COOH to give the crude monoacid **19**. Due to the propensity of acid **19** to undergo fragmentation with formation of methyl methacrylate in the presence of base [18], the general methods to generate thioesters from acids activated with DCC (dicyclohexylcarbodiimide), phosphorodichloridates [19], or carbonylbis[1*H*-imidazoles] [20] were not effective. However, addition of the acyl chloride, obtained from crude **19** by treatment with SOCl₂ or CHCl₂OMe, to the thiols in CH₂Cl₂ at 0° afforded the thioesters **20a** (80%), **20b** (40%), **21** (65%), **22a** (47%), and **22b** (56%) in moderate to good yield.

a) NaH, HMPT. *b*) CH₂Br₂. *c*) CF₃COOH. *d*) SOCl₂ or CHCl₂OMe, then RSH **9a**, **b**, **12**, **16d**, or **16f**, Et₃N, CH₂Cl₂, r.t.

By the same method, the dimethylmalonate derivative **24** and the succinate **26** were prepared in 44 and 48% yield from **23** and **25**, respectively (*Scheme 5*).

a) CHCl₂OMe, 9b, Et₃N, CH₂Cl₂. b) CF₃COOH. c) CHCl₂OMe, 9b, Et₃N, CH₂Cl₂.

Binding of Polyethers to Alkali Cations. – Chelation of alkali cations by the tris(oxyethanediyl) group of 20a, 20b, and 21 and those of corresponding vitamin-B₁₂ derivatives [21] forms the basis of the 'podand model' mentioned above. To establish basic features of the association between the substrates and the vitamin B₁₂ derived catalyst, both bearing a podand head group, we investigated the ability of the dithio derivatives 8b and 11 to bind Na⁺ and K⁺. The association constants were determined in D₂O/CDCl₃ with the picrate method [22][23]. Podand 8b binds K⁺ with $K_{ass} = 3.6 \cdot 10^3 \text{ m}^{-1}$ and Na⁺ with $K_{ass} = 4.2 \cdot 10^3 \text{ m}^{-1}$. Podand 11 binds K⁺ with $K_{ass} = 1.3 \cdot 10^3 \text{ m}^{-1}$. Whether the observed associations involve one or two polyether moieties was not determined. Electron-spray MS results also suggest an association of the polyether with cations. For 21, a ESI-MS peak m/z 465.20 corresponding to the thioester [21 + Li⁺] was observed.

Concluding Remarks. – For the development of further models for the coenzyme-B₁₂-dependent methylmalonyl mutase incorporating molecular recognition, the (bromomethyl)thiomalonates **20a**, **b**, **21**, **24**, and **25** as well as **22a**, **b** were prepared in an efficient way. The gluconoyl moiety of **22a**, **b** was chosen for a potential interaction between the polyhydroxy head groups grafted to the vitamin-B₁₂-derived catalyst [16][24] and the model substrates **22a**, **b**. For the 'podand model', the substrates **20a**, **b** and **21** bearing a tris(oxyethanediyl) moiety were prepared. Under control of alkali cations, the podand head groups of the substrates should interact with the complementary polyether group attached to the vitamin-B₁₂-derived catalyst [2]. Exploring this potential, the association of the polyethers **8b** and **11** with alkali cations was investigated using the picrate extraction method.

This work has been supported by the *Bundesamt für Bildung und Wissenschaft*, Bern (Project BBW No. 950606), within the *European Research Program TMR* (Contract No. ERBFMRXCT 960018) and the *Swiss National Science Foundation* (Project No. 20-43565.95). *M. J. P.* thanks Prof. *B. T. Golding* for the discussions and the support during his stay in the Department of Chemistry at the University of Newcastle and PD Dr. *J. Schaller* for the access to the ESI-MS instrument and for technical assistance.

Experimental Part

General. The reactions were carried out with reagents and solvents of *Fluka (puriss.* grade). For workup, the reaction mixture was poured onto ice-water, the aq. phase extracted with the appropriate solvent, and the combined org. phase washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄) and evaporated. Flash chromatography (FC): distilled commercial-grade solvents, silica gel (30–60 µm) from *Baker* (analyzed reagents). TLC: *Merck-F-254* precoated sheets, visualization by 5% phosphomolybdic acid hydrate/EtOH or by UV. UV/VIS Spectra: *Hewlett Packard 8451 A*; λ_{max} in nm. IR Spectra: *Perkin-Elmer PE 782*; CHCl₃ soln. in 0.2-mm-path NaCl cells; in cm⁻¹. NMR Spectra: if not stated otherwise, in CDCl₃ at 300 MHz (¹H) and 75 MHz (¹³C), *Bruker AC-300* instrument; δ in ppm rel. to the CDCl₃ signal (δ (H) 7.24, δ (C) 77.00), *J* in Hz; ¹³C multiplicities from DEPT spectra. MS: *Varian MAT CH-7A*, 70 eV; in *m/z* (%). LSI-MS: *Fision Autospec-Q*, acceleration voltage 8 kV, ionization Cs⁻ (32 keV), matrix as indicated; in *m/z* (%). ESI-MS: *Fisions Instrument VG Platform II*, positive-ion measurements (3.5 kV), negative-ion measurements (2.5 kV); in *m/z* (%). Acronyms: DMF, dimethylformamide; DMPA, *N*,*N*-dimethylfpridine-4-amine; EDC, *N*-ethyl-*N*-[3-(dimethylfamind)-propyl]carbodiimide-hydrochloride; HMPT, hexamethylfphosphoric triamide.

N-(ω -Bromoalkyl)phthalimides **3a**-**f**. The procedure [9] was modified: A suspension of potassium phthalimide (1; 4.76 g, 25 mmol) in DMF (25 ml) was slowly added to the 1, ω -dibromoalkane **2a**-**f** (103 mmol) in DMF (10 ml) under Ar. After refluxing for 4 h, the KBr formed was removed by filtration, the DMF evaporated at 65°, 50 Torr, and the residue purifid by FC (hexane/Et₂O 3:1). Recrystallization from hexane/Et₂O gave pure product.

682

N-(6-Bromohexyl)phthalimide (**3a**) was prepared as reported [9]: R_t (hexane/Et₂O 3 : 1): 0.30. M.p. 55° ([9]: 57°). IR (KBr): 1780vs, 1730vs, 1480s, 1440s, 1400vs, 1370vs, 1340vs, 900s, 980s. ¹H-NMR: 1.40–1.50 (*2m*, 4 H); 1.65–1.75 (*m*, 2 H); 1.81–1.91 (*m*, 2 H); 3.40 (*t*, *J*=7.17, 2 H); 3.68 (*t*, 2 H); 7.70–7.74 (*m*, 2 H); 7.80–7.99 (*m*, 2 H). ¹³C-NMR: 26.02 (*t*); 27.70 (*t*); 28.41 (*t*); 32.60 (*t*); 33.64 (*t*); 37.82 (*t*); 123.18 (*d*); 132.14 (*s*); 133.87 (*d*); 168.42 (*s*). MS (calc. for C₁₄H₁₆BrNO₂, 310.19): 311 (34, [*M*+2]⁺), 310 (5), 309 (35, *M*⁺(⁷⁹Br)), 230 (13), 161 (64), 160 (100), 148 (13), 133 (11), 130 (17), 104 (13).

N-(8-Bromooctyl)phthalimide (**3b**): Yield 5.3 g (62.7%). R_t (hexane/Et₂O 1:2). 0.59. M.p. 50° ([11]: 49°). IR (KBr): 1770s, 1700vs, 1465s, 1435s, 1400s, 1370s, 1065s, 1055s. ¹H-NMR: 1.25–1.42 (*m*, 8 H); 1.62–170 (*m*, 2 H); 1.70–1.89 (*m*, 2 H); 3.39 (*t*, J = 7.00, 2 H); 3.68 (*t*, J = 7.35, 2 H); 7.69–7.74 (*m*, 2 H); 7.81–7.86 (*m*, 2 H). ¹³C-NMR: 26.71 (*t*); 28.06 (*t*); 28.53 (*t*); 28.58 (*t*); 28.95 (*t*); 32.74 (*t*); 33.93 (*t*); 37.99 (*t*); 123.17 (*d*); 132.19 (*s*); 133.85 (*d*); 168.47 (*s*). MS (calc. for C₁₆H₂₀BrNO₂, 338.25): 339 (48), 337 (50), 258 (20), 174 (15), 161 (72), 160 (100), 148 (19), 133 (15), 130 (23).

N-(9-Bromononyl)phthalimide (**3c**): Yield 6.65 g (75.5%). Colorless, lancet-like crystals. R_t (hexane/Et₂O 3:1) 0.26. M.p. 31°. IR (KBr): 1772s, 1714vs, 1466s, 1438s, 1398s, 1370s, 1050s, 880s, 720s. ¹H-NMR: 1.25–1.45 (*m*, 10 H); 1.62–1.74 (*m*, 2 H); 1.71–1.89 (*m*, 2 H); 3.40 (*t*, J = 7.00, 2 H); 3.69 (*t*, J = 7.35, 2 H); 7.65–7.74 (*m*, 2 H); 7.86–7.90 (*m*, 2 H). ¹³C-NMR: 26.77 (*t*); 28.11 (*t*); 28.55 (*t*); 28.64 (*t*); 29.03 (*t*); 29.24 (*t*); 32.79 (*t*); 33.94 (*t*); 38.01 (*t*); 123.14 (*d*); 132.19 (*s*); 133.83 (*d*); 168.42 (*s*). MS: 354 (33), 353 (99), 352 (35), 351 (100), 272 (29), 175 (19), 161 (66), 160 (72), 148 (41), 130 (37), 104 (24). Anal. calc. for C₁₇H₂₂BrNO₂ (352.27): C 57.96, H 6.29, N 3.98; found: C 58.28, H 6.35, N 3.92.

N-(10-Bromodecyl)phthalimide (3d): Yield 5.68 g (63%). Colorless, lancet-like crystals. R_t (hexane/Et₂O 3:1) 0.29. M.p. 57° ([11]: 56°). IR (KBr): 1780s, 1730vs, 1475s, 1440s, 1400vs, 1375s, 1065s, 540s. ¹H-NMR: 1.21 – 1.45 (m, 12 H); 1.60 – 1.74 (m, 2 H); 1.76 – 1.91 (m, 2 H); 3.40 (t, J = 7.0, 2 H); 3.68 (t, J = 7.35, 2 H); 7.68 – 7.73 (m, 2 H); 7.82 – 7.90 (m, 2 H). ¹³C-NMR: 26.63 (t); 28.15 (t); 28.58 (t); 28.71 (t); 29.11 (t); 29.34 (t); 32.84 (t); 34.00 (t); 38.01 (t); 123.16 (d); 132.21 (s); 133.84 (d); 168.47 (s). MS (calc. for C₁₈H₂₄BrNO₂, 366.30): 367 (38, [M + 2]⁺), 366 (7), 365 (39, $M^{+}(^{79}$ Br)), 286 (10), 174 (14), 161 (70), 160 (100), 148 (20), 130 (22).

N-(11-Bromoundecyl)phthalimide (**3e**): Yield 16.08 g (96%). Colorless, lancet-like crystals. R_t (hexane/Et₂O 1:1) 0.41. M.p. 48°. IR (KBr): 1770s, 1720vs, 1435s, 1395vs, 1370s, 720s. ¹H-NMR (200 MHz): 1.14–1.45 (*m*, 14 H); 1.60–1.74 (*m*, 2 H); 1.76–1.90 (*m*, 2 H); 3.37 (*t*, *J* = 6.85, 2 H); 3.64 (*t*, *J* = 7.3, 2 H); 7.64–7.72 (*m*, 2 H); 7.77–7.84 (*m*, 2 H). ¹³C-NMR (50 MHz): 27.02 (*t*); 28.34 (*t*); 28.77 (*t*); 28.92 (*t*); 29.33 (*t*); 29.58 (*t*); 33.02 (*t*); 34.24 (*t*); 38.25 (*t*); 123.34 (*d*); 132.38 (*s*); 134.02 (*d*); 168.66 (*s*). MS: 381 (78), 379 (75), 300 (20), 175 (20), 174 (40), 161 (80), 160 (100), 148 (60), 130 (45), 105 (38), 104 (42). Anal. calc. for C₁₉H₂₆BrNO₂ (380.32): C 60.00, H 6.89, N 3.68; found: C 59.98, H 6.87, N 3.55.

N-(*12-Bromododecyl*)*phthalimide* (**3f**): Yield 5.4 g (68%). Colorless crystals. $R_{\rm f}$ (hexane/Et₂O 1:1) 0.55. M.p. 62–63°. IR: 1710s, 1400s.¹H-NMR: 1.21–1.50 (*m*, overlap with 1.27 (*s*), 16 H); 1.68 (*m*, 2 H); 1.86 (*m*, 2 H); 3.42 (*t*, 2 H); 3.69 (*t*, 2 H); 7.68–7.76 (*m*, 2 H). ¹³C-NMR: 26.85 (*t*); 28.18 (*t*); 28.50 (*t*); 28.76 (*t*); 29.17 (*t*); 29.40 (*t*); 29.44 (*t*); 29.48 (*t*); 32.85 (*t*); 34.03 (*t*); 38.08 (*t*); 123.14 (*d*); 132.21 (*s*); 133.82 (*d*); 168.46 (*s*). MS: 395 (100), 393 (100, M^+ (⁷⁹Br), 314 (16), 202, 174 (28), 161 (70), 160 (82), 148 (37), 133 (25), 130 (27). Anal. calc. for C₂₀H₂₈BrNO₂ (394.35): C 60.91, H 7.16, N 3.55; found: C 61.09, H 7.09, N 3.37.

N,N'-(*Dithiodialkane-w*,1-*diyl*)*bis[phthalimide]* $4\mathbf{a} - \mathbf{f}$ [9]: *General Procedures*. A soln. of the N-(ω -bromoalkyl)phthalimide $3\mathbf{a} - \mathbf{f}$ (31.2 mmol) and Na₂S₂O₃ (7.53 g, 30.3 mmol) was refluxed in MeOH/H₂O 1:1 (120 ml) for 4 h. The hot soln. was treated with solid I₂ (*ca*. 4 g) in portions until the brown color remained. After reduction of the excess I₂ with Na₂S₂O₅, the yellow soln. was allowed to cool down and left overnight in the refrigerator (4°). The solid product was separated by decanting, purified by FC (hexane/Et₂O 1:1), and precipitated from a conc. soln. in Et₂O by addition of MeOH: $4\mathbf{a} - \mathbf{f}$ as a colorless powder.

N,N'-(*Dithiodihexane-6,1-diyl*)*bis[phthalimide]* (**4a**): Yield 1.98 g (55.2%). R_f (hexane/Et₂O 3:1) 0.21. M.p. 59° ([9]: 58°). IR (KBr): 1780vs, 1720vs, 1440vs, 1400vs, 1370vs, 1060s. ¹H-NMR: 1.25–1.40 (*m*, 8 H); 1.68–1.73 (*m*, 8 H); 2.69 (*t*, *J* = 7.35, 4 H); 3.69 (*t*, 4 H); 7.67–7.75 (*m*, 4 H); 7.76–7.84 (*m*, 4 H). ¹³C-NMR: 26.31 (*t*); 26.36 (*t*); 28.36 (*t*); 28.91 (*t*); 37.74 (*t*); 38.74 (*t*); 122.98 (*d*); 132.01 (*s*); 133.73 (*d*); 168.12 (*s*). MS (calc. for $C_{28}H_{32}N_2O_4S_2$, 524.59): 524 (12, M^+), 377 (45), 377 (45), 376 (100), 216 (60), 202, 188 (39), 175 (41), 174 (44), 161 (72), 160 (100), 149 (53), 148 (51), 133 (41), 130 (45), 105 (40), 104 (40).

N,N'-(*Dithiodioctane-8,1-diyl*)*bis[phthalimide]* (**4b**): Similarly, **3b** (3.28 g, 5.64 mmol) gave 1.98 g (55%) of **4b**. $R_{\rm f}$ (hexane/Et₂O 2 : 1) 0.45. M.p. 48° ([9]: 47°). IR (KBr): 1775*s*, 1465*s*, 1435*s*, 1400*s*, 1360*s*, 1050*s*. ¹H-NMR: 1.25 - 1.40 (*m*, 16 H); 1.60 - 1.80 (*m*, 8 H); 2.66 (*t*, *J* = 7.35, 4 H); 3.67 (*t*, *J* = 7.20, 4 H); 7.65 - 7.75 (*m*, 4 H); 7.81 - 7.88 (*m*, 4 H). ¹³C-NMR: 26.74 (*t*); 28.38 (*t*); 28.52 (*t*); 28.99 (*t*); 29.03 (*t*); 29.12 (*t*); 37.94 (*t*); 39.03 (*t*); 123.07 (*d*); 132.14 (*s*); 133.79 (*d*); 168.29 (*s*). MS (calc. for C₃₂H₄₀N₂O₄S₂, 580.69): 580 (4, *M*⁺), 291 (14), 258 (12), 189 (14), 160 (100), 148 (28), 133 (22), 105 (20).

N,N'-(*Dithiodinonane-9,1-diyl*)*bis[phthalimide]* (**4c**): Yield 7.63 g (79%). $R_{\rm f}$ (hexane/Et₂O 1:1) 0.34. M.p. 53°. IR (KBr): 1775*m*, 1710vs, 1400s, 1360s, 790s, 720s. ¹H-NMR: 1.25 – 1.40 (*m*, 20 H); 1.60 – 1.80 (*m*, 8 H); 2.66 (*t*, *J* = 7.35, 4 H); 3.67 (*t*, *J* = 7.20, 4 H); 7.65 – 7.75 (*m*, 4 H); 7.81 – 7.88 (*m*, 4 H). ¹³C-NMR: 26.87 (*t*); 28.55 (*t*); 28.61 (*t*); 29.19 (*t*); 29.50 (*t*); 29.24 (*t*); 29.53 (*t*); 38.08 (*t*); 39.19 (*t*); 123.15 (*d*); 132.19 (*s*); 133.62 (*d*); 168.47 (*s*). MS: 608 (94, M^+), 337 (26), 305 (34), 272 (32), 160 (100), 148 (26), 130 (22). Anal. calc. for C₃₄H₄₄N₂O₄S₂: C 67.07, H 7.28, N 4.60; found: C 66.90, H 7.37, N 4.46.

N,N'-(*Dithiodidecane-10,1-diyl*)*bis*[*phthalimide*] (**4d**): Similarly, **3d** (15.6 g, 42.6 mmol) gave 9.61 g (70.9%) of **4d**. $R_{\rm f}$ (hexane/Et₂O 1:1) 0.19. M.p. 49°. IR (KBr): 1775*s*, 1720*vs*, 1465*s*, 1435*s*, 1400*vs*, 1365*s*, 720*vs*. ¹H-NMR: 1.20–1.42 (*m*, 24 H); 1.60–1.78 (*m*, 8 H); 2.69 (*t*, *J* = 7.35, 4 H); 3.69 (*t*, *J* = 7.35, 4 H); 7.68–7.79 (*m*, 4 H); 7.82–7.91 (*m*, 4 H). ¹³C-NMR: 26.85 (*t*); 28.52 (*t*); 28.59 (*t*); 29.15 (*t*); 29.19 (*t*); 29.23 (*t*); 29.41 (*t*); 38.07 (*t*); 39.19 (*t*); 123.15 (*d*); 132.21 (*s*); 133.82 (*d*); 168.46 (*s*). MS (calc. for C₃₆H₄₈N₂O₄S₂, 636.80): 636 (6, *M*⁺), 319 (20), 202 (22), 174 (24), 160 (100), 148 (46), 130 (38).

N,N'-(*Dithiodiundecane-11,1-diyl*)*bis[phthalimide]* (**4e**): Similarly, **3e** (10.94 g, 28.3 mmol) gave 14.85 g (77.6%) of **4e**. R_t (hexane/Et₂O 2:1) 0.44. M.p. 45°. IR (KBr): 1770*m*, 1715vs, 1395s, 790vs, 720s. ¹H-NMR (200 MHz): 1.11–1.45 (*m*, 28 H); 1.58–1.72 (*m*, 8 H); 2.62 (*t*, J = 7.35, 4 H); 3.69 (*t*, 4 H); 7.64–7.72 (*m*, 4 H); 7.75–7.82 (*m*, 4 H). ¹³C-NMR (50 MHz): 26.88 (*t*); 28.56 (*t*); 28.62 (*t*); 28.85 (*t*); 29.24 (*t*); 29.48 (*t*); 38.10 (*t*); 39.21 (*t*); 123.16 (*d*); 132.22 (*s*); 133.86 (*d*); 168.48 (*s*). MS: 664 (5, M^+), 626 (18), 409 (35), 333 (86), 203 (22), 160 (100), 148 (66), 130 (60), 104 (50). HR-MS: 664.336670 (C₃₈H₃₂N₂O₄S⁺₂; calc. 664.336852).

N,N'-(*Dithiodidodecane-12,1-diyl*)*bis[phthalimide]* (**4f**): Yield 7.1 g (77%). Wax. R_f (hexane/Et₂O 1:1). IR (KBr): 1789*m*, 1722*s*, 1401*m*. ¹H-NMR: 120–1.42 (*m*, overlap with 1.20 (*s*), 32 H); 1.60–1.80 (*m*, 8 H); 2.69 (*t*, *J* = 7.35, 4 H); 3.69 (*t*, *J* = 7.35, 4 H); 7.60–7.80 (*m*, 4 H); 7.81–7.90 (*m*, 4 H). ¹³C-NMR: 26.85 (*t*); 28.53 (*t*); 28.59 (*t*); 29.16 (*t*); 29.22 (*t*); 29.45 (*t*); 29.47 (*t*); 29.52 (*t*); 38.07 (*t*); 39.19 (*t*); 123.12 (*d*); 132.20 (*s*); 133.80 (*d*); 168.44 (*s*). MS: 692 (92, $[M - H]^+$), 379 (46), 347 (100), 330 (80), 315 (98), 160 (84), 148 (55). HR-MS: 692.36377 (C₄₀H₅₆N₂O₄S⁴₂; calc. 692.368152).

 ω, ω' -Dithiobis[alkan-1-amine] Dihydrochlorides: General Procedure. **5a**-**f** [9]. The N,N'-(dithioalkane- ω ,1-diyl)bis[phthalimide] (**4a**-**f**, 9.86 mmol) was refluxed with hydrazine hydrate (30.6 mmol) in EtOH (90 ml) for 1 h under N₂. A colorless solid precipitated after complete dissolution of the starting material. The solvent was evaporated and the residue refluxed in 1M HCl (88 ml) for 1 h. After careful removal of the solvent under reduced pressure, the residue was dissolved in EtOH, the hydrazide filtered off, and the product precipitated with Et₂O/AcOEt 1:1. The dithiobis[alkanamine] dihydrochloride was recrystallized from EtOH/Et₂O/AcOEt 1:2:2 (200 ml).

6,6'-Dithiobis[hexan-1-amine] Dihydrochloride (**5a**): M.p. 224-230° ([9]: 235°). IR (KBr): 1480s, 1440s, 1400vs, 1380s. ¹H-NMR (300 MHz, CD₃OD): 1.44 (m, 8 H); 1.60-1.80 (m, 8 H); 2.69 (t, 4 H); 2.91 (t, 4 H). MS (calc. for C₁₂H₃₀Cl₂N₂S₂, 337.30): 298 (2), 180 (8), 165 (60), 148 (16), 133 (70), 132 (100), 116 (50), 115 (51), 100 (68).

8,8'-Dithiobis[octan-1-amine] Dihydrochloride (**5b**): Similarly, **4b** (0.31 g, 0.53 mmol) gave, after recrystallization from EtOH, 0.150 g (72%) of **5b**. Colorless crystals. M.p. 213° ([9]: 215°). IR (KBr). 1496s, 1082*m*. ¹H-NMR (300 MHz, CD₃OD): 1.27 – 1.40 (*m*, 16 H); 1.55 – 1.75 (*m*, 8 H); 2.67 (*t*, *J* = 7.20, 4 H); 2.89 (*t*, *J* = 7.60, 4 H). ¹³C-NMR (75 MHz, CD₃OD): 27.31 (*t*); 28.41 (*t*); 29.22 (*t*); 29.95 (*t*); 29.96 (*t*); 30.03 (*t*); 39.03 (*t*); 40.70 (*t*). MS (calc. for C₁₆H₃₈Cl₂N₂S₂, 393.41): 393 (2, *M*⁺), 160 (78), 143 (65), 128 (100), 87 (48), 69 (48).

9,9'-Dithiobis[nonan-1-amine] Dihydrochloride (**5c**): Yield 3.69 g (89%). Colorless powder. M.p. 164° (dec.). IR (KBr): 1500s. ¹H-NMR (300 MHz, CD₃OD): 1.30–1.48 (m, 20 H); 1.60–1.75 (m, 8 H); 2.67 (t, J = 7.25, 4 H); 2.91 (t, J = 7.60, 4 H). ¹³C-NMR (75 MHz, CD₃OD): 27.07 (t); 28.18 (t); 29.03 (t); 29.77 (t); 29.78 (t); 29.83 (t); 29.99 (t); 39.28 (t); 40.39 (t). MS (calc. for C₁₈H₄₂Cl₂N₂S₂, 421.46): 380 (20), 198 (60), 190 (26), 174 (52), 157 (64), 142 (100), 129 (16), 109 (94).

10', 10'-Dithiobis[decan-1-amine] Dihydrochloride (**5d**): Yield 4.14 g (93%), from **4d** (6.3 g, 9.89 mmol). M.p. 178° ([9]: 180°). IR (KBr): 1780, 1730, 1480, 1400, 1380, 730. ¹H-NMR (300 MHz, CD₃OD): 1.24–1.40 (*m*, 24 H); 1.61–1.75 (*m*, 8 H); 2.66 (*t*, *J* = 7.17, 4 H); 2.90 (*t*, 4 H). ¹³C-NMR (75 MHz, CD₃OD): 26.28 (*t*); 27.36 (*t*); 28.24 (*t*); 28.99 (*t*, 2 × int.); 29.08 (*t*); 29.21 (*t*); 29.31 (*t*); 38.59 (*t*); 39.62 (*t*).

11,11'-Dithiobis[undecan-1-amine] Dihydrochloride (**5e**): Similarly, **4e** (14.0 g, 22.3 mmol) gave 9.44 g (88%) of **5e**. M.p. 174°. IR (KBr): 1535m, 1434m, 1094m, 931m. ¹H-NMR (200 MHz, CD₃OD): 1.53 (*s*, 28 H); 1.61–1.99 (*m*, 8 H); 2.86 (*t*, J = 7.17, 4 H); 3.10 (*t*, 4 H). ¹³C-NMR (50 MHz, CD₃OD): 28.48 (*t*); 29.59 (*t*); 30.43 (*t*); 31.24 (*t*); 31.51 (*t*); 31.58 (*t*); 40.72 (*t*); 41.80 (*t*). MS (calc. for C₂₂H₅₀Cl₂N₂S₂, 477.57): 436 (1), 385 (2), 352 (14), 235 (62), 203 (80), 202 (100), 185 (22), 171 (24), 170 (76), 162 (44), 104 (32).

12,12'-Dithiobis[dodecan-1-amine] Dihydrochloride (**5f**): Similarly, **4f** (6 mmol) gave 1.6 g (55%) of **5f**. M.p. >195° (dec.). ¹H-NMR (300 MHz, CD₃OD): 1.20–1.40 (*m*, overlap with 1.32 (*s*), 32 H); 1.55–1.80 (*m*, 8 H); 2.67 (*t*, J = 7.35, 4 H); 2.82–2.98 (*m*, 4 H). For further characterization, **5f** was acetylated by treatment with Ac₂O and Et₃N to give N,N'-(*dithiodidodecane-12,1-diyl*)*bis[acetamide]* (**6**). M.p. 103–105°. IR (KBr): 1679s, 1530*m*, 1108*m*. ¹H-NMR: 1.2–1.7 (*m*, 20 H); 2.0 (*s*, 3 H); 2.7 (*t*, 2 H); 3.25 (*q*, 2 H); 5.5 (br. *s*, 1 H). MS: 516 (4, M^+), 258 (100), 226 (98), 216 (24), 184 (28), 72 (37). HR-MS: 516.375920 (C₂₈H₃₆N₂O₂S⁺₂; calc. 516.378323).

N,N'-(*Dithiodihexane-6,1-diyl*)*bis*[2-[2-(2-*methoxyethoxy*)*ethoxy*]*acetamide*] (**8a**). A suspension of **5a** (900 mg, 2.67 mmol), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (**7**; 1.24 g, 6.96 mmol), and dichloro(methoxy)-methane (CHCl₂OMe) [24] (2.454 g, 21.35 mmol) in CH₂Cl₂ (50 ml) was stirred for 3 h at r.t. under Ar. After dropwise addition of Et₃N (2 ml) and stirring overnight at r.t. under Ar, the mixture was poured on water-ice (50 ml). The aq. layer was extracted with CH₂Cl₂ (3×30 ml) and the combined org. phase washed with sat. NaHCO₃ soln. (3×30 ml) and brine (total 90 ml); dried (Na₂SO₄), and evaporated. FC (CH₂Cl₂/MeOH 10 :1) gave 0.76 g (48%) of **8a**. Oil. *R*_f (CH₂Cl₂/MeOH 10.1) 0.48. IR (CHCl₃): 1750*m*, 1680vs, 1550s, 1340s. ¹H-NMR: 1.39 (br. *s*, 8 H); 1.50–1.59 (*m*, 4 H); 1.63–1.72 (*m*, 4 H); 2.63 (*t*, *J* = 7.26, 4 H); 3.24–3.31 (*m*, 4 H); 3.38 (*s*, 6 H); 3.52–3.58 (*m*, 4 H); 3.59–3.69 (*m*, 12 H); 3.15 (*s*, 4 H); 7.00 (*t*, 2 H). ¹³C-NMR: 26.46 (*t*); 28.06 (*t*); 28.96 (*t*); 29.39 (*t*); 38.76 (*t*); 38.72 (*t*); 58.88 (*q*); 70.06 (*t*); 70.19 (*t*); 70.90 (*t*); 71.76 (*t*); 169.74 (*s*). MS: 584 (2, *M*⁺), 325 (8), 292 (100), 260 (28), 235 (38), 216 (46), 184 (32), 172 (24), 160 (14), 133 (12), 115 (24), 103 (20). HR-MS: 584.316530 (C₂₆H₅₂O₈N₂S⁺; calc. 584.316511).

N,N'-(*Dithiodioctane-8,1-diyl*)*bis*[2-[2-(2-*methoxyethoxy*)*ethoxy*]*acetamide*] (**8b**). From **5b** (4.0 g, 12.5 mmol), as described for **5a**. FC (CH₂Cl₂/MeOH 20:1) gave 3.68 mg (46%) of **8b**. Clear oil. R_t (CH₂Cl₂/MeOH 20:1) 0.26. IR (CHCl₃): 1670vs, 1540vs, 1460s, 1340s. ¹H-NMR: 1.25–1.45 (*m*, 16 H); 1.48–1.58 (*m*, 4 H); 1.58–1.66 (*m*, 4 H); 2.63 (*t*, *J* = 7.35, 4 H); 3.18–3.28 (*m*, 4 H); 3.38 (*s*, 6 H); 3.51–3.53 (*m*, 4 H); 3.54–3.64 (*m*, 12 H); 3.95 (*s*, 4 H); 7.00 (*t*, 2 H). ¹³C-NMR: 26.84 (*t*); 28.39 (*t*); 29.10 (*t*); 29.11 (*t*); 29.13 (*t*); 29.58 (*t*); 38.84 (*t*); 39.02 (*t*); 58.96 (*q*); 70.16 (*t*); 70.37 (*t*); 70.50 (*t*); 70.93 (*t*); 71.84 (*t*); 169.74 (*s*). MS (calc. for C₃₀H₆₀O₈N₂S₂, 640.83): 640 (1, *M*⁺), 353 (19), 322 (23), 321 (56), 320 (100, [*M*/2]⁺), 288 (29), 263 (37), 244 (34), 212 (28), 200 (23), 188 (27).

N,N'-(*Dithiodinonane-9,1-diyl*)*bis*[2-[2-(*methoxyethoxy*)*ethoxy*]*acetamide*] (**8c**). From **5c** (0.20 g, 0.475 mmol), as described for **8a**. FC (CH₂Cl₂/MeOH 20:1) gave 175 mg (53%) of **8c**. Colorless grease. R_t (CH₂Cl₂/AcOEt 6:5) 0.11. IR (CHCl₃): 1670vs, 1540s, 1340s, 1110vs. ¹H-NMR (500 MHz, CD₃OD): 1.33 (br. *s*, 16 H); 1.38 – 1.41 (*m*, 4 H); 1.51 – 1.54 (*m*, 4 H); 1.67 – 1.72 (*m*, 4 H); 2.67 (*t*, *J* = 7.25, 4 H); 3.23 (*t*, *J* = 7.20, 4 H); 3.36 (*s*, 6 H); 3.54 – 3.56 (*m*, 4 H); 3.64 – 3.67 (*m*, 12 H); 4.03 (*s*, 4 H). ¹³C-NMR (125 MHz, CD₃OD): 28.24 (*t*); 29.71 (*t*); 30.49 (*t*); 30.52 (*t*); 30.62 (*t*); 30.81 (2*t*); 40.05 (*t*); 40.24 (*t*); 59.43 (*q*); 71.46 (*t*); 71.61 (*t*); 71.64 (*t*); 72.24 (*t*); 73.19 (*t*); 172.84 (*s*). MS: 668 (18, M^+), 565 (24), 535 (58), 334 (62), 277 (29), 202 (40), 133 (30), 103 (38), 89 (56), 69 (38), 59 (100). Anal. calc. for C₃₂H₆₄O₈N₂S₂ (668.88): C 56.49, H 9.58, N 4.19; found: C 56.26, H 9.70, N 4.10.

2-[2-(Methoxyethoxy)ethoxy]acetic Acid (Dithiodipropane-3,1-diyl) Ester (**11**). According to [25], a mixture of **7** (4.58 g, 25.7 mmol), CHCl₂OMe (3.7 g, 32.1 mmol) and ZnCl₂ (0.18 g, 1.2 mmol) was stirred at r.t. for 1 h and refluxed 1 h under N₂. The excess of CHCl₂OMe was evaporated, the residual acid chloride dissolved in CH₂Cl₂ (10 ml) and added dropwise within 30 min to a soln. of 3,3'-dithiobis[propan-1-ol] (**10**; 1.8 g, 9.89 mmol) [12] and Et₃N (2.5 ml) in CH₂Cl₂ (50 ml) at r.t. The mixture was refluxed overnight under Ar and worked up by addition of H₂O (70 ml) and extraction of the aq. phase with CH₂Cl₂ (3 × 20 ml). The combined org. phase was washed with sat. Na₂CO₃ soln. (3 ×), 2M HCl, and brine, dried (MgSO₄), and evaporated. FC (hexane/AcOEt/MeOH 10:10:1) gave 2.775 g (56%) of **11**. Colorless oil. $R_{\rm f}$ (CH₂Cl₂/AcOEt/MeOH 10:10:1) 0.47. IR (CHCl₃): 1760vs, 1480s, 1260–1200s, 1180–1080vs. ¹H-NMR: 1.99–2.08 (*m*, 4 H); 2.70 (*t*, *J* = 7.08, 4 H); 3.55 (*s*, 6 H); 3.51–3.54 (*m*, 4 H); 3.54–3.64 (3 superimposed *m*, 12 H); 4.14 (*s*, 4 H); 4.23 (*t*, *J* = 6.2, 4 H). ¹³C-NMR: 28.11 (*t*); 34.81 (*t*); 58.99 (*q*); 62.93 (*t*); 68.58 (*t*); 70.51 (*t*); 70.91 (*t*); 71.87 (*t*); 170.36 (*s*). MS: 502 (1, M^+), 161 (22), 133 (36), 117 (43), 103 (78), 89 (58), 59 (100). HR-MS: 502.190642 (C₂₀H₃₈O₁₀S⁺; calc. 502.190580).

N,N'-(*Dithiodioctane-8,1-diyl*)*bis*[D-gluconamide] (14b). The known procedure [26] was adapted: to a soln. of **5b** (1 g, 2.54 mmol) in MeOH (30 ml) D-glucono-1,5-lactone (13; 0.90 g, 5.08 mmol) was added. After dropwise addition of Et₃N (2.8 ml), a colorless precipitate appeared. The mixture was refluxed for 1 h and filtered after cooling. The precipitate was washed with MeOH and dried for 2 h under vacuum: 0.79 g (46.2%) of **14b**. M.p. 166–168°. IR (KBr): 1650*m*, 1630*s*, 1550*s*, 1090*s*, 1040*m*. ¹H-NMR (300 MHz, (D₆)DMSO): 1.19–1.43 (*m*, overlap with 1.27 (*s*); total 20 H); 1.57–1.64 (*m*, 4 H); 2.65 (*t*, *J* = 6.99, 4 H); 2.97–3.06 (*m*, 4 H); 3.42, 3.52 (2*m*); 3.80–4.00 (2*m*, 4 H); 4.25–4.56 (4*m*, 8 H); 3.04–3.13 (*m*, 2 H); 5.24–5.35 (*m*, 2 H); 7.56 (*m*, 2 H). ¹³C-NMR: (75 MHz, (D₆)DMSO): 26.28 (*t*); 27.74 (*t*); 28.52 (*t*); 28.56 (*t*); 29.10 (*t*); 37.03 (*t*); 39.93 (*t*); 38.21 (*t*); 63.30 (*t*); 69.79 (*d*); 71.73 (*d*); 72.45 (*d*); 73.63 (*d*); 172.3 (*s*). LSI-MS (matrix glycerol; calc. for

 $C_{28}H_{56}N_2O_{12}S_2, 676.77): 677 (9, M^+), 661 (2), 553 (2), 525 (2), 499 (13), 467 (2), 369 (4), 340 (10), 321 (4), 306 (5), 277 (13), 185 (100), 162 (18), 133 (55).$

N,N'-(*Dithiodidodecane-12,1-diyl*)*bis*[D-gluconamide] (**14f**). As described for **14b**, Et₃N (3 ml) was added dropwise to a soln. of **5f** (2.1 g, 4.2 mmol) and **13** (1.42 g, 8 mmol) in MeOH (80 ml). The mixture was stirred at r.t. for 4 h under N₂. The colorless precipitate was filtered off and the MeOH soln. cooled and filtered again: 2.0 g (61%) of **14f**. White solid. M.p. 152–154° (dec.). IR (KBr): 1650s, 1650s, 1636s, 1554s, 1100s. ¹H-NMR (300 MHz, (D₆)DMSO): 1.15–1.61 (*m*, overlap with 1.13 (*s*)); 1.62–1.90 (*m*); 2.78 (*m*); 2.90–3.20 (*m*, overlap with DMSO peak); 3.30–3.80 (*m*, overlap with H₂O peak); 3.90–4.10 (*m*); 4.35–4.75 (*m*); 5.35–5.50 (*m*); 7.70 (*m*). LSI-MS (matrix glycerol): 789.6 (21, M^+), 611.5 (100), 433 (54).

N,N'-(*Dithiodidecane-10,1-diyl*)*bis*[2,3,4,5,6-*penta*-O-*acetyl*-D-*gluconamide*] (**15d**). As described for **14b** Et₃N (10 ml) was added dropwise to a soln. of **5d** (4 g, 8.9 mmol) and **13** (3.17 g, 17.8 mmol) in MeOH (100 ml). After reflux for 45 min and cooling in the refrigerator overnight, the precipitate was filtered off and dried *in vacuo* for 3 h. The brownish bis[gluconamide] **14d** (*ca.* 4.6 g) was treated with pyridine (35 ml) and Ac₂O (50 ml) and stirred for 4 h at 60° under N₂. The reaction was quenched by addition of ice-water (50 ml) and the aq. phase extracted with CH₂Cl₂ (3×30 ml). The org. phases were washed with 1M HCl, sat. brine, dried (Na₂SO₄), and evaporated. FC of the residue (hexane/AcOEt 1 : 3) gave 6.89 g (67%) of **15d**. Viscous, yellowish oil. *R*₁ (hexane/AcOEt 1 : 3) 0.33. IR (CHCl₃): 1750vs, 1690m, 1530s, 1375vs, 1220vs, 1050s. 'H-NMR: 1.20 - 1.40 (*m*, 24 H); 1.40 - 1.53 (2*m*, 4 H); 1.54 - 1.60 (*m*, 4 H); 2.04, 2.05, 2.11, 2.21 (4s, total 30 H); 2.67 (*t*, *J* = 7.35, 4 H); 3.20 - 3.28 (*m*, 4 H); 4.13 (*dd*, *J* = 12.2, 5.5, 2 H); 6.34 (*t*, 1 H). ¹³C-NMR: 20.44 (*q*); 20.72 (*q*); 20.73 (*q*); 26.80 (*t*); 28.50 (*t*); 29.20 (*t*); 29.42 (*t*); 39.12 (*t*); 39.54 (*t*); 61.56 (*t*); 68.76 (*d*); 69.10 (*d*); 69.42 (*d*); 71.70 (*d*); 165.91 (*s*); 169.81 (*s*); 169.89 (*s*); 170.63 (*s*).

N,N'-(*Dithiodidodecane-12,1-diyl*)*bis*[2,3,4,5,6-*penta*-O-*acetyl*-D-*gluconamide*] (**15f**). A soln of **14f** (2.0 g, 2.5 mmol), pyridine (15 ml), and Ac₂O (40 ml) was stirred at 60° for 2 h under N₂. The mixture was poured onto ice-water and extracted with CH₂Cl₂ (3 ×). The org. phase was washed with 1M HCl, sat. NaCl soln., dried (MgSO₄), and evaporated: 2.87 g (94%) of **15f**. Oil. $R_{\rm f}$ (AcOEt/hexane 3 :1) 0.46. ¹H-NMR 1.20–1.80 (*m*, overlap with 1.26 (*s*), 40 H); 2.00–2.30 (*m*, overlap with 2.05 (*s*), 2.09 (*s*), 2.11 (*s*), 2.20 (*s*), 30 H); 2.91 (*t*, *J* = 7.35, 4 H); 3.23 (*m*, 4 H); 4.13 (*dd*, *J* = 12, 5.5, 2 H); 4.31 (*dd*, *J* = 12.5, 4.0, 2 H); 4.95–5.10 (*m*, 2 H); 5.30 (*d*, *J* = 5.5, 2 H); 5.45 (*m*, 2 H); 5.68 (*t*, *J* = 5.3, 2 H); 6.09 (*m*, 2 H). ¹³C-NMR: 20.42 (*q*); 20.68 (*q*); 20.74 (*t*); 26.82 (*t*); 28.51 (*t*); 29.23 (*t*); 29.54 (*t*); 39.16 (*t*); 39.58 (*t*); 61.56 (*t*); 68.78 (*t*); 69.11 (*d*); 69.39 (*d*); 71.74 (*d*); 166.02 (*s*); 169.27 (*s*); 169.92 (*s*); 170.68 (*s*). LSI-MS (calc. for C₅₆H₉₂N₂O₂₂S₂, 1209.46; matrix glycerol): 1209.6 (86, *M*⁺), 1149.5 (38), 863.5 (100), 636.3 (70).

Reduction of the N,N'-(Dithiodialkanediyl)bis[amides]: General Procedure. The mixture of the N,N'-(dithiodialkanediyl)bis[amide] (1.2 mmol) and activated Zn [27] (4.3 mmol) was refluxed in AcOH (50 ml) for 18 h under Ar. Residual Zn was filtered off, sat. NaHCO₃ soln. (50 ml) added, and the soln. carefully concentrated to 40 ml. After extraction with AcOEt ($3 \times$, total 240 ml), the org. layer was washed with sat. NaHCO₃ soln. ($3 \times$, total 210 ml) and brine (total 210 ml), dried (Na₂SO₄) and evaporated: *N*-(ω -mercaptoalkyl)amide.

N-(6-Mercaptohexyl)-2-[2-(2-methoxyethoxy)ethoxy]acetamide (**9a**): Yield 0.401 g (57%). R_t (AcOEt/ CH₂Cl₂/MeOH 7:5:1) 0.60. IR (CHCl₃): 1760m, 1740s, 1670vs, 1545s, 1240s, 1100vs, 1040s. ¹H-NMR: 1.24–1.41 (*m*, 5 H); 1.42–1.63 (*m*, 4 H); 2.46–2.55 (*q*, 2 H); 3.2–3.30 (*m*, 2 H); 3.37 (*s*, 3 H); 3.52–3.59 (*m*, 2 H); 3.61– 3.71 (*m*, 6 H); 3.95 (*s*, 2 H); 7.00 (*s*, 1 H). ¹³C-NMR: 24.46 (*t*); 26.34 (*t*); 27.96 (*t*); 29.49 (*t*); 33.82 (*t*); 38.74 (*t*); 58.97 (*q*); 70.16 (*t*); 70.37 (*t*); 70.50 (*t*); 70.94 (*t*); 71.85 (*t*); 169.80 (*s*). MS (calc. for C₁₃H₂₇O₄NS, 293.37): 293 (17, *M*⁺), 260 (10), 235 (20), 218 (19), 172 (20), 142 (20), 117, 115 (20), 103 (20), 89 (24). HR-MS: 293.165310 (C₁₃H₂₇O₄NS⁺; calc. 293.166080).

N-(8-Mercaptooctyl)-2-[2-(2-methoxyethoxy)ethoxy]acetamide (**9b**): From **8b** (1.6 g, 2.5 mmol), **9b** (1.5 g, 95%) was obtained. $R_{\rm f}$ (AcOEt/CH₂Cl₂/MeOH 5:5:1) 0.55. IR (CHCl₃): 1760*m*, 1740*s*, 1670*vs*, 1545*s*, 1240*s*, 1250*m*, 1100*vs*, 1040*s*. ¹H-NMR: 1.25 (br. *s*, 9 H); 1.43 – 1.61 (2*m*, 4 H); 2.49 (*q*, 2 H); 3.21 – 3.28 (*m*, 2 H); 3.36 (*s*, 3 H); 3.51 – 3.56 (*m*, 2 H); 3.61 – 3.66 (*m*, 6 H); 3.97 (*s*, 2 H); 7.07 (*t*, 1 H). ¹³C-NMR: 24.60 (*t*); 26.86 (*t*); 28.28 (*t*); 28.97 (*t*); 29.17 (*t*); 29.56 (*t*); 33.99 (*t*); 38.99 (*t*); 58.99 (*q*); 70.17 (*t*); 70.28 (*t*); 70.50 (*t*); 70.98 (*t*); 71.87 (*t*); 170.24 (*s*). MS (calc. for C₁₅H₃₁O₄NS, 321.42): 321 (16, M^+), 288 (11), 263 (21), 212 (20), 200 (26), 188 (33), 170 (13), 103 (13), 89 (19), 87 (24), 59 (100).

3-Mercaptopropyl 2-[2-(2-Methoxyethoxy)ethoxy]acetate (12): From 11 (2.0 g, 398 mmol) 12 (1.8 g, 89%) was obtained. 12 Colorless oil. $R_{\rm f}$ (AcOEt/CH₂Cl₂/MeOH 10:10:1) 0.51. IR (CHCl₃): 1760vs, 1700m, 1460s, 1435s, 1400s, 1380s, 1360s, 1260–1200s, 1180–1080vs, 860s. ¹H-NMR: 1.40 (t, J = 8.0, 1 H); 1.90–1.97 (m, 2 H); 2.58 (q, 2 H); 3.37 (s, 3 H); 3.53–3.55 (m, 2 H); 3.60–3.72 (3 superimposed m, 6 H); 4.15 (s, 2 H); 4.26 (t, J = 8.0, 1 H); 4.26 (t, J =

686

6.2, 2 H). ¹³C-NMR: 20.99 (*t*); 32.68 (*t*); 59.00 (*q*); 62.75 (*t*); 68.59 (*t*); 70.53 (*t*); 70.64 (*t*); 70.92 (*t*); 71.88 (*t*); 170.42 (*s*). MS: 252 (7, M^+), 194 (11), 179 (21), 105 (33), 103 (60), 89 (40). HR-MS: 252.103100 (C₁₀H₂₀O₅S⁺; calc. 252.103146).

N-(*10-Mercaptodecyl*)-2,3,4,5,6-*penta*-O-*acetyl*-D-*gluconamide* (**16d**): From **15d** (1.5 g, 1.3 mmol), **16d** (0.79 g, 53%) was obtained. Oil. R_t (hexane/AcOEt 1:1) 0.44. IR (CHCl₃): 1740vs, 1370s, 1240s, 1220s, 1190s, 1040s, 1030s. ¹H-NMR: 1.21 – 1.40 (br. *s*, overlap with 1.34 (*t*); 13 H); 1.43 – 1.66 (2*m*, 4 H); 2.05, 2.05, 2.10, 2.11, 2.21 (5s, 15 H); 2.48 – 2.55 (*q*, 2 H); 3.17 – 3.28 (*m*, 2 H); 4.13 (*dd*, *J* = 12.2, 5.5, 1 H); 4.31 (*dd*, *J* = 12.2, 4.0, 1 H); 5.00 – 5.10 (*m*, 1 H); 5.30 (*d*, *J* = 5.14, 1 H); 5.44 (*q*, 1 H); 5.69 (*t*, *J* = 5.15, 1 H); 6.34 (*t*, 1 H). ¹³C-NMR: 20.33 (*q*); 20.57 (*q*); 20.63 (*q*); 24.49 (*t*); 26.73 (*t*); 28.24 (*t*); 29.00 (*t*); 29.13 (*t*); 29.33 (*t*); 29.36 (*t*); 33.94 (*t*); 39.44 (*t*); 39.54 (*t*); 61.45 (*t*); 68.70 (*d*); 69.08 (*d*); 69.35 (*d*); 71.75 (*d*); 165.95 (*s*); 169.10 (*s*); 169.59 (*s*); 169.68 (*s*); 169.73 (*s*); 170.99 (*s*).

N-(12-Mercaptododecyl)-2,3,4,5,6-penta-O-acetyl-D-gluconamide (**16f**). Yield 2.45 g (92%). Clear oil. $R_{\rm f}$ (AcOEt/hexane) 0.57. ¹H-NMR: 1.20–1.70 (*m*, overlap with 2.06 (*s*), 2.12 (*s*), total 12 H); 2.2 (*s*, 3 H); 2.45–2.60 (*m*, 2 H); 3.20–3.35 (*m*, 1 H); 4.14 (*dd*, *J* = 12.1, 5.5, 1 H); 4.32 (*dd*, *J* = 12.1, 4.0, 1 H); 4.95–5.10 (*m*, 1 H); 5.30 (*d*, *J* = 5.5, 1 H); 5.45 (*m*, 1 H); 5.69 (*m*, 1 H); 6.09 (*m*, 1 H). ¹³C-NMR: 20.44 (*q*); 20.71 (*q*); 24.66 (*t*); 26.82 (*t*); 28.37 (*t*); 29.07 (*t*); 29.23 (*t*); 29.42 (*t*); 29.50 (*t*); 29.54 (*t*); 34.05 (*t*); 39.56 (*t*); 61.55 (*t*); 68.75 (*d*); 69.11 (*d*); 69.41 (*d*); 71.70 (*d*); 165.88 (*s*); 169.20 (*s*); 169.65 (*s*); 169.88 (*s*); 170.10 (*s*). LSI-MS (calc. for C₂₈H₄₇NO₁₁S, 605.74, matrix DTT/DTE 5:1): 647.9 (14, *M* + H + K]⁺), 606.9 (12, [*M* + H]⁺), 587.9 (12), 546 (17), 260.2 (70), 216.2 (19), 149.1 (25).

tert-*Butyl Methyl 2-(Bromomethyl)-2-methylpropanedioate* (18). A soln. of 17 (37.5 g, 200 mmol) in toluene (50 ml) was added within 20 min to a suspension of NaH (55% oil dispersion; 16 g) in toluene (300 ml) and HMPT (50 ml). The mixture was refluxed for 2 h under N₂, cooled, and directly decanted into dibromomethane (200 g, 1.15 mol) at 80°. After 3 h reflux, the mixture was stirred for 18 h at r.t. and worked up. The aq. phase was extracted with Et₂O (3×) and the combined org. phase washed with NaCl soln., dried (MgSO₄), and evaporated. Fractional destillation yielded 42.3 g (76%) of **18**. Colorless liquid. B.p. $75^{\circ} - 80^{\circ}/$ 0.2 Torr. IR (CHCl₃): 1751s, 1395*m*, 1272*m*, 1166*s*, 1123*m*. ¹H-NMR: 1.44–1.49 (*m*, overlap with 1.46 (*s*), total 9 H); 1.53 (*s*, 3 H); 3.72–3.77 (*m*, overlapped with 3.76 (*s*), total 5 H). ¹³C-NMR: 19.38 (*q*); 27.58 (*q*); 35.84 (*t*); 52.60 (*q*); 55.49 (*s*); 82.52 (*s*); 168.24 (*s*); 170.29 (*s*). MS: 265 (26), 251 (15), 225 (35), 209 (88), 181 (71), 151 (51), 101 (76), 69 (37), 57 (100), 41 (52), 29 (25).

O-Methyl S-(8-Oxo-10,13,16-trioxa-7-azaheptadecyl) 2-(Bromomethyl)-2-methylmonothiomalonate (=Methyl 2-(Bromomethyl)-2-methyl-3-oxo-3-[(8-oxo-10,13,16-trioxa-7-azaheptadecyl)thio]propanoate; 20a).The acid chloride of methyl hydrogen 2-(bromomethyl)-2-methylpropanedioate (19) was prepared by stirring a soln. of 18 (3 g, 10.6 mmol) in CF₃COOH (25 ml) at r.t. for 3 h under Ar. The excess of CF₃COOH was evaporated, the resulting monoacid 19 dissolved in CHCl₂OMe (1.6 g), and the mixture stirred 4 h at r.t. under Ar. The excess CHCl₂OMe was evaporated to give the acid chloride (2.43 g, 93%) as a colorless liquid. The freshly prepared acid chloride (330 mg, 1.36 mmol) was dissolved in CH₂Cl₂ (5 ml), treated with Et₃N (2 ml), and cooled to 0° . A soln. of **9a** (200 mg, 0.682 mmol) in CH₂Cl₂ (20 ml) was slowly added during 30 min and the mixture stirred for 4 h at r.t. After workup and extraction of the aq. layer with CH_2Cl_2 (3 × , 30 ml), the combined org. layers were washed with 2M NaHCO₃ (3×), 2M HCl (3×), and brine, dried (NaSO₄), and evaporated. The yellow oil (2.1 g) was purified by FC (AcOEt/CH₂Cl₂/MeOH 5:5:1): 0.27 g (80%) of 20a. Clear oil. R_f (AcOEt/CH₂Cl₂/MeOH 5:5:1) 0.56. IR (CHCl₃): 1740s, 1680vs, 1540s, 1460s, 1280s, 1110vs, 970s. ¹H-NMR: 1.36 (br. s, 4 H); 1.49 - 1.56 (m, superimposed at 1.63 (s); total 7 H); 2.91 (t, J = 7.26, 2 H); 3.22 - 3.29(q, 2 H); 3.35 (s, 3 H); 3.53 – 3.58 (m, 2 H); 3.64 – 3.70 (m, 6 H); 3.755 $(d, J_{AB} = 10.30)$, superimposed at 3.775 (s), total 4 H); 3.847 (d, J_{48} = 10.30, 1 H); 3.98 (s, 2 H); 7.05 (t, 1 H). ¹³C-NMR: 20.07 (q); 26.38 (t); 28.37 (t); 29.01 (t); 29.25 (t); 29.50 (t); 36.03 (t); 38.74 (t); 53.15 (q); 59.00 (q); 61.82 (s); 70.20 (t); 70.42 (t); 70.54 (t); 70.98 (t); 71.89 (*t*); 169.70 (*s*); 169.93 (*s*); 196.72 (*s*). MS: 501 (2, *M*⁺), 499 (2, *M*⁺), 292 (100), 260 (20), 216 (46), 184 (21), 133, 101 (18), 100 (25). HR-MS: 499.124050 (C19H34BrO7NS; calc. 499.123936).

O-*Methyl* S-(*10-Oxo-12*, *15*, *18-trioxa-9-azanonadecyl*) 2-(*Bromomethyl*)-2-*methylmonothiomalonate* (= *Methyl* 2-(*Bromomethyl*)-2-*methyl-3-oxo-3-*[(*10-oxo-12*, *15*, *18-trioxa-9-azanonadecyl*)*thio*]*propanoate*; **20b**). As described for **20a**, from the acid chloride (1.5 g, 6.1 mmol) of **19** (prepared as described above) in CH₂Cl₂ (15 ml), Et₃N (2 ml), and **9b** (1.0 g, 3.11 mmol) in CH₂Cl₂ (25 ml): 0.632 g (39%) of **20b**. Colorless oil. *R*_f (AcOEt/CH₂Cl₂/MeOH 5 : 5 : 1) 0.50. IR (CHCl₃): 1740vs, 1680vs, 1110vs, 970s. ¹H-NMR : 1.30 (br. *s*, 8 H); 1.47–1.58 (*m*, 4 H); 1.64 (*s*, 3 H); 2.91 (*t*, *J* = 7.25, 2 H); 3.26 (*q*, 2 H); 3.38 (*s*, 3 H); 3.51–3.55 (*m*, 2 H); 3.62–3.70 (*m*, 6 H); 3.74 (*d*, *J_{AB}* = 10.85, superimposed 3.743 (*s*), total 4 H); 3.85 (*d*, *J_{AB}* = 10.48, 1 H); 3.99 (*s*, 2 H); 7.01 (*t*, 1 H). ¹³C-NMR: 20.04 (*q*); 26.8 (*t*); 28.61 (*t*); 28.91 (*t*); 29.02 (*t*); 29.07 (*t*); 29.31 (*t*); 29.54 (*t*); 36.01 (*t*); 38.89 (*t*); 53.12 (*q*); 58.96 (*q*); 61.78 (*s*); 70.16 (*t*); 70.27 (*t*); 70.49 (*t*); 70.95 (*t*); 71.85 (*t*); 169.68 (*s*); 170.02 (*s*); 196.71

(*s*). MS (calc. for C₂₁H₃₈BrO₇NS 528.45): 529 (1, *M*⁺), 527 (1, *M*⁺), 321 (24), 320 (100), 288 (38), 244 (59), 212 (25), 133 (16), 103 (16).

O-*Methyl* S-(5-*Oxo*-4,7,10,13-tetraoxatetradecyl)-2-(*Bromomethyl*)-2-*methylmonothiomalonate* (= *Methyl* 2-(*Bromomethyl*)-2-*methyl*-3-oxo-3-[(5-oxo-4,7,10,13-tetraoxatetradecyl)thio]propanoate; **21**). To the soln. of the acid chloride, obtained from **19** as described above, **12** (1.5 g, 3.2 mmol) in CH₂Cl₂ (20 ml) was added dropwise within 20 min at 0° under Ar. FC (hexane/AcOEt/MeOH 10:10:1) gave **21** (1.758 g, 65%). Colorless oil. $R_{\rm f}$ (hexane/AcOEt/MeOH 10:10:1) 0.33. IR (CHCl₃): 1750vs, 1685vs, 1460vs, 1445s, 1385s, 1260–1200vs, 1180–1080vs. ¹H-NMR: 1.64 (*s*, 3 H); 1.95 (*d*, 2 H); 3.01 (*t*, *J* = 7.17, 2 H); 3.38 (*s*, 3 H); 3.54–3.57 (*m*, 2 H); 3.62–3.70 (*m*, 4 H); 3.76 (*s*, superimposed at 3.71–3.77 (*m*) and (*d*), total 6 H); 3.824 (*d*, J_{AB} = 10.29, 1 H); 4.17 (*s*, superimposed at 4.14 (*t*, *J* = 6.25), total 4 H). ¹³C-NMR: 19.93 (*q*); 25.76 (*t*); 28.27 (*t*); 35.80 (*t*); 53.20 (*q*); 58.98 (*q*); 61.71 (*s*); 61.71 (*s*); 62.81 (*t*); 68.55 (*t*); 70.50 (*t*); 70.62 (*t*); 70.92 (*t*); 71.87 (*t*); 169.52 (*s*); 170.35 (*s*); 196.32 (*s*). MS: 283 (32), 281 (36), 219 (56), 209 (46), 207 (54), 181 (44), 179 (58), 153 (38), 143 (28), 133 (50), 103 (48), 59 (100). ESI-MS (MeCN/H₂O 1:1 and 2% LiClO₄): 467.20 (100, $[M + 2 + \text{Li}]^+$), 465.20 (90, $[M + \text{Li}]^+$). Anal. calc. for C₁₆H₂₇BrO₈S (459.30): C 41.91, H 6.07; found: C 41.84, H 5.92.

O-Methyl S-{10-[(2,3,4,5,6-Penta-O-acetyl-D-gluconoyl)amino]decyl] 2-(Bromomethyl)-2-methylmonothiomalonate (= Methyl 2-(Bromomethyl)-2-methyl-3-oxo-3-{[10-[(2,3,4,5,6-penta-O-acetyl-D-gluconoyl)amino [decyl]thio]propanoate; 22a). As described for 20a, treatment of 18 (0.30 g, 1.06 mmol) first with CF₃COOH, then with SOCl₂ gave the acid chloride of 19, which was treated with Et₃N (2 ml) and 16d (0.60 g, 1.04 mmol) in toluene (6 ml). FC (AcOEt/hexane 1:1) of the viscous, vellowish oil gave the diastereomer mixture 22a (380 mg, 47%). Clear oil. Rf (AcOEt/hexane 1:1) 0.55. IR (CHCl₃): 1760s, 1740s, 1380s, 1230s. ¹H-NMR: 1.25-1.40 (m, 12 H); 1.40 – 1.51 (m, 2 H); 1.53 – 1.60 (m, 2 H); 1.64 (s, 3 H); 2.05 (s, 3 H); 2.06 (s, 3 H); 2.10 (s, 3 H); 2.11 (s, 3 H); 2.20 (s, 3 H); 2.92 (t, J = 7.36, 2 H); 3.18-3.27 (m, 2 H); 3.76 (d, $J_{AB} = 10.47$, overlap with 3.78 (s), total 4 H); 3.88 (d, $J_{AB} = 10.47, 1$ H); 4.13 (dd, J = 12.13, 5.53, 1 H); 4.32 (dd, J = 12.13, 4.05, 1 H); 5.00-5.10 (m, 1 H); 5.30 (d, J = 5.15, 1 H); 5.45 (q, 1 H); 5.68 (t, J = 5.15, 1 H); 6.34 (t, J = 5.78, 1 H).¹³C-NMR: 20.03 (q); 20.40(q); 20.65(q); 20.71(q); 26.76(t); 28.63(t); 28.96(t); 29.08(t); 29.15(t); 29.31(t); 29.34(t); 29.37(t); 36.05 (*t*); 39.50 (*t*); 53.13 (*q*); 61.50 (*t*); 61.79 (*s*); 68.75 (*d*); 69.11 (*d*); 69.40 (*d*); 71.76 (*d*); 165.98 (*s*); 169.16 (*s*); 169.64 (s); 169.67 (s); 169.78 (s); 169.81 (s); 170.54 (s); 196.68 (s). MS (calc. for C₃₂H₅₀BrNO₁₄S, 784.66): 786 (1, $[M+2]^+$, 784 (1, $M^{+(79}Br)$), 754 (2), 752 (2), 725 (1), 723(0.9), 682 (2), 665 (3), 623 (3), 576 (100), 558 (8), 682 (2), 665 (3), 623 (3), 610 (100), 558 (8), 610 (100) 544 (12), 534 (44), 516 (76), 484 (20), 474 (22), 424 (10), 396 (8), 347 (8), 287 (9), 272 (11), 258 (9), 242 (11), 230 (62), 198 (38), 188 (42), 184 (76), 171 (18), 157 (44), 142 (54), 129 (20), 115 (54), 103 (48).

O-Methyl S-{12-[(2,3,4,5,6-Penta-O-acetyl-D-gluconoyl)amino]dodecyl] 2-(Bromomethyl)-2-methylmonothiomalonate (= Methyl 2-(Bromomethyl)-2-methyl-3-oxo-3-{[12-[(2,3,4,5,6-penta-O-acetyl-D-gluconoyl)amino]dodecyl]thio]propanoate; **22b**). The acid chloride, prepared from the acid **19** with SOCl₂, was dissolved in toluene (5 ml), cooled, and treated, as described for **22a**, with Et₃N and **16f** (200 mg, 0.33 mmol) in toluene (5 ml) (18 h). For workup, the aq. phase was extracted with AcOEt (2 ×) and the org. phase dried (MgSO₄). FC (AcOEt/hexane 3 :1) gave 150 mg (56%) of **22b** as a diastereoisomer mixture. R_t (AcOEt/hexane 3 :1) 0.56. ¹H-NMR: 1.20-1.80 (*m*, overlap with 1.24 (*s*) and 1.63 (*s*), total 23 H); 2.00-2.30 (*m*, overlap with 2.05 (*s*); 2.09 (*s*), 211 (*s*), and 2.20 (*s*), total 18 H); 2.91 (*t*, 2 H); 3.23 (*m*, 2 H); 3.75 (*d*, J = 10.3, overlap with 3.77 (*s*), total 4 H); 3.87 (*d*, J = 10.3, 1 H); 4.12 (*dd*, J = 12.5, 5.5, 1 H); 4.31 (*dd*, J = 12, 4.0 H); 4.95-5.10 (*m*, 1 H); 5.99 (*d*, J = 5.5, 1 H); 5.44 (*m*, 1 H); 5.67 (*m*, 1 H); 6.09 (*m*, 1 H). ¹³C-NMR: 20.06 (*q*); 20.40 (*q*); 20.65 (*q*); 20.66 (*q*); 20.72 (*q*); 26.77 (*t*); 28.68 (*t*); 29.00 (*t*); 29.04 (*t*); 29.18 (*t*); 29.37 (*t*); 29.51 (*t*); 29.53 (*t*); 29.55 (*t*); 36.02 (*t*); 39.52 (*t*); 53.12 (*t*); 61.51 (*t*); 61.81 (*s*); 68.72 (*d*); 69.08 (*d*); 69.37 (*d*); 71.66 (*d*); 165.86 (*s*); 169.17 (*s*); 169.61 (*s*); 169.84 (*s*); 170.58 (*s*); 196.70 (*s*). LSI-MS (calc. for C₃₄H₅₄BrNO₁₄S, 812.77; matrix glycerol): 812 (78, M⁺), 754 (79), 710 (36), 604 (38); 572 (34), 540 (100), 512 (37), 470 (33), 424 (62), 361 (92), 332 (55).

O-*Methyl* S-(*10-Oxo-12,15,18-trioxa-9-azanonadecyl*) *Dimethylmonothiomalonate* (= *Methyl* 2,2-*Dimethyl-3-oxo-3-[(10-oxo-12,15,18-trioxa-9-azanona-decyl)thio]propanoate*; **24**). Methyl hydrogen dimethylmalonate (**23**; 100 mg, 0.684 mmol) in CH₂Cl₂ (5 ml) was treated with CHCl₂OMe (1 g, 8.7 mmol) overnight [25]. The excess chlorinating agent was removed under reduced pressure and the acid chloride dissolved in CH₂Cl₂ (10 ml) and added dropwise to the soln. of **9b** (219 mg, 0.684 mmol) and Et₃N (0.5 ml) in CH₂Cl₂ (20 ml) at 0°. The mixture was stirred for 20 h at r.t. and worked up. FC (CH₂Cl₂/MeOH 20:1) gave 134 mg (44%) of **22b**. Clear oil. $R_{\rm f}$ (CH₂Cl₂/MeOH 20:1) 0.29. IR (CHCl₃): 1740s, 1680s, 1545s, 1470s, 1155s, 1110s, 970s. ¹H-NMR: 1.22 – 1.45 (*m*, superimposed at 1.56 (*s*), total 14 H); 1.48 – 1.64 (2*m*, 4 H); 2.88 (*t*, *J* = 7.35, 2 H); 3.23 – 3.31 (*q*, 2 H); 3.38 (*s*, 3 H); 3.55 – 3.58 (*m*, 2 H); 3.65 – 3.70 (*m*, 6 H); 3.68 (*s*, 2 H); 3.98 (*s*, 2 H); 7.01 (*t*, 1 H). ¹³C-NMR: 23.07 (*q*); 23.09 (*q*), 26.76 (*t*); 28.86 (*t*); 28.88 (*t*); 71.79 (*t*); 169.71 (*s*); 172.85 (*s*); 200.04 (*s*). MS (cale.

for $C_{21}H_{39}O_7NS$, 449.50): 449 (20, M^+), 418 (45), 374 (14), 320 (95), 288 (30), 244 (55), 212 (30), 129 (55), 101 (92).

O-*Methyl* S-(*10-Oxo-12*,*15*,*18-trioxa-9-azanonadecyl*) *2-Methylmonothiosuccinate* (= *Methyl* 2-*Methyl-4-oxo-4-[(10-oxo-12*,*15*,*18-trioxa-9-azanonadecyl*)*thio]butanoate*; **26**). 4-(*tert-*Butyl) 1-methyl 2-methylsuccinate (**25**; 300 mg, 1.48 mmol) was stirred in CF₃COOH (7 ml) for 4 h at r.t. and, after evaporation, treated with CHCl₂OMe (1 g, 8.7 mmol) for 12 h. The excess chlorinating agent was evaporated and the acid chloride dissolved in CH₂Cl₂ (7 ml) and added dropwise to a soln. of **9b** (150 mg, 0.467 mmol) and Et₃N (0.5 ml) in CH₂Cl₂ (10 ml) within 20 min. Workup and FC (CH₂Cl₂/Et₂O/MeOH 8 : 2 : 1) gave **26** (0.10 g, 48%) as a clear oil. HPLC (H₂O/MeOH 3 : 7): 79.8 mg (38%). *R*_t (CH₂Cl₂/Et₂O/MeOH 8 : 2 : 1) 0.66 IR (CHCl₃): 1740s, 1680s, 1545s, 1110s, 970s. ¹H-NMR: 1.20 (*d*, *J* = 6.78, 3 H); 1.30 (*m*, 8 H); 1.50–1.64 (*2m*, 4 H); 2.60–2.64 (*m*, 1 H); 2.86 (*t*, *J* = 7.26, 2 H); 2.94–3.07 (*m*, 2 H); 3.24–3.30 (*q*, 2 H); 3.38 (*s*, 3 H); 3.55–3.58 (*m*, 2 H); 3.65–3.70 (*m*, 6 H); 3.98 (*s*, 2 H); 7.03 (*t*, 1 H). ¹³C-NMR: 16.62 (*q*); 26.68 (*t*); 28.51 (*t*); 28.71 (*t*); 28.81 (*t*); 29.31 (*t*); 29.42 (*t*); 35.83 (*d*); 38.71 (*t*); 44668 (*t*); 51.76 (*q*); 58.81 (*q*); 70.04 (*t*); 70.24 (*t*); 70.38 (*t*); 77.72 (*t*); 199.44 (*s*); 175.24 (*s*); 197.37 (*s*). MS: 449 (8, *M*⁺), 418 (16), 321 (58), 320 (68), 288 (36), 263 (26), 244 (36), 219 (19), 212 (15), 188 (17), 129 (100). HR-MS: 449.244960 (C₂₁H₃₉O₇NS⁺; calc. 449.247425).

REFERENCES

- H. Dugas, 'Bioorganic Chemistry: A Chemical Approach to Enzyme Action', Springer-Verlag, New York, 3rd edn., 1996.
- [2] J. M. Lehn, Angew. Chem. 1990, 102, 1347; Angew. Chem., Int. Ed. 1990, 29, 1304; D. J. Cram, Angew. Chem. 1988, 100, 1041; Angew. Chem., Int. Ed. 1988, 27, 1009.
- [3] F. Mancia, N. H. Keep, A. Nakagawa, P. F. Leadlay, S. McSweeney, B. Rasmussen, P. Bösecke, O. Drat, P. R. Evans, *Structure* 1996, 4, 339; N. H. Thomä, T. W. Meier, P. F. Leadlay, in 'Vitamin B₁₂ and B₁₂-Proteins', Eds. B. Kräutler, D. Arigoni, and B. T. Golding, Wiley-VCH, Weinheim-New York, 1998.
- [4] J. Rétey, Angew. Chem. 1990, 102, 373; Angew. Chem., Int. Ed. Engl. 1990, 29, 355.
- [5] A. Wolleb, T. Darbre, V. Siljegovic, R. Keese, J. Chem. Soc., Chem. Commun. 1994, 835; T. Darbre, R. Keese, V. Siljegovic, A. Wolleb-Gygi, Helv. Chim. Acta 1996, 79, 2100.
- [6] T. Darbre, R. Keese, V. Siljegovic, J. Chem. Soc., Chem. Commun. 1996, 1561.
- [7] T. Darbre, V. Siljegovic, A. Amolins, T. Otten, R. Keese, L. Abrantes, J. P. Correia, 'Novel Trends in Electroorganic Synthesis', Ed. S. Torii, Springer Verlag, Tokyo, 1998, p. 395.
- [8] F. Sun, T. Darbre, R. Keese, Tetrahedron 1999, 55, 9777.
- [9] W. Dirscherl, F. W. Weingarten, Justus Liebigs Ann. Chem. 1951, 547, 131.
- [10] H. Burrows, J. Chem. Ed. 1992, 69, 1.
- [11] K. Larsson, J. Am. Oil Chem. 1966, 43, 559.
- [12] B. J. Evans, J. Takahashi Doi, W. K. Musker, J. Org. Chem. 1990, 55, 2580.
- [13] J.-H. Fuhrhop, P. Schmieder, J. Rosenberg, E. Boekema, J. Am. Chem. 1987, 109, 3387; J.-H. Fuhrhop, D. Fritsch, Acc. Chem. Res. 1986, 19, 130.
- [14] F. W. Nader, A. Brecht, S. Kreisz, Chem. Ber. 1986, 119, 1196.
- [15] T. Mosokawa, T. Yamamaka, M. Itotani, S.-I. Murahashi, J. Org. Chem. 1995, 60, 6159.
- [16] V. Siljegovic, Ph.D. Thesis, Universität Bern, 1995.
- [17] H. Flohr, W. Pannhorst, J. Retey, Helv. Chim. Acta 1978, 61, 1565.
- [18] Susanna Müller, Ph.D. Thesis, Universität Bern, 1988.
- [19] S. Masamune, S. Kamata, J. Diakur, Y. Sugihara, G. S. Bates, Can. J. Chem. 1975, 53, 3693.
- [20] H.-J. Gais, Angew. Chem. 1977, 89, 251.
- [21] M. J. Pfammatter, T. Darbre, R. Keese, Helv. Chim. Acta 1998, 81, 1105.
- [22] K. E. Koenig, G. M. Lein, P. Stickler, T. Kaned, D. J. Cram, J. Am. Chem. Soc. 1979, 101, 3553.
- [23] C. S. Wilcox, 'Frontiers in Supramolecular Organic Chemistry and Photochemistry', Ed. H. J. Schneider and H. Dürr, 1991, VCH, Weinheim.
- [24] A. Wolleb-Gygi, Ph.D. Thesis, University of Bern, 1993.
- [25] L. Heslinga, J. F. Arens, Rec. Trav. Chim. Pays-Bas 1957, 76, 982.
- [26] H. U. Geyer, Chem. Ber. 1964, 97, 2271.
- [27] R. L. Shriner, F. W. Neumann, Org. Synth. 1955, Coll. Vol. 3, 73.

Received October 30, 2000